Free Market P2P Energy Trading

DEesigN DoOCUMENT

Team #41

Arun Sondhi: Embedded Engineer
Alec Dorenkamp: Software Engineer
Noah Eigenfeld: Software Engineer
Brendon Geils: Founder/Software Engineer
Jack Myers: Hardware Engineer

Joe Staudacher: Hardware Engineer

Client: Sodima Solutions

Adviser: Goce Trajcevski

sdmay18-41@iastate.edu
sdmay18-41.sd.ece.iastate.edu

Revised: 12/4/17



Table of Contents

List of figures/tables/symbols/definitions
1 Introduction
1.1 Problem and Project Statement
1.2 Operational Environment
1.3 Intended Users and Uses
1.4 Assumptions and Limitations
1.5 Expected End Product and Deliverables
2 Specifications and Analysis
2.1 Implementation Options
2.2 Proposed Design
2.3 Design Analysis
3 Testing and Implementation
3.1 Interface Specifications
3.2 Hardware and Software
3.3 Process
3.4 Results
4 Conclusion
4.1 Acknowledgement
4.2 References
5 Appendices
5.1 Current Design Diagrams

5.2 Previous Design Diagrams

11

12

12

13

14

14

14

15

15

17

17

21



List of figures/tables/symbols/definitions

Figure 1: A top-level block diagram of the smart meter basic functionality

Figure 2: A macro-component diagram of the web application

Figure 3: An overview of our proposed system

Figure 4: A dev-ops diagram illustrating the design and development process of the project
Figure 5: Original system overview

Figure 6: Original macro-component diagram for the web application and how it interacted with
the Ethereum deployment

Figure 7: Original map of the functionality of the web application, as it would have worked with a
blockchain design



1 Introduction

In this section, we discuss the problem our project is based around and our proposed solution. In
section 2, we explain potential solutions to our problem, and outline our specific solution design. In
section 3, we discuss methods for testing each major component of our design.

1.1 PROBLEM AND PROJECT STATEMENT

The primary aim of our project is to incentivize renewable energy generation from individuals and
small businesses by facilitating peer to peer trading of surplus energy. By creating a free market
environment for energy trading, individuals will think more about how they produce and consume
energy, and will be inclined to generate energy of their own. With this new understanding and
market accessibility, energy prices will fluctuate to be at parity with their true value, not just what
the utility company dictates. A more detailed description of our implementation of this free market
solution is found later in this document.

Our secondary goal is aiding in the decentralization of the power generation market. The
interconnectedness of grids has already contributed to the reduction of blackouts, as one individual
power plant or utility company is not solely responsible for all energy generation. At the time of
writing, a Chicago grid can pull from a Toronto plant if they approach their capacity curve. Our
system would aid this interconnectedness a degree further, as the power loss and cost to transfer
energy a mile up the road would be less than the power loss and cost to move that energy from
Toronto to Chicago. A more decentralized grid would help the overall grid to be robust to
fluctuations, as the sources of energy would be widespread and independent.

The connection between decentralizing energy generation and our solution is clear. We hope that
an open market will allow individuals to feasibly operate their own renewable energy sources like
solar panels or wind turbines. If this goal is realized, energy will not be produced only at large
plants. Because of this, consumers will be able to rely on a more diverse array of energy sources
than those currently available.

A positive side effect of incentivizing renewable energy generation is that it will also incentivize
slowing down climate change. Renewable energy usage is seen as one of the key ways to target this
problem, but a large portion of worldwide energy does not come from this “clean” energy
generation. To change this, the generation of renewable energy needs to be more accessible to
individuals and businesses, rather than only those who have the resources and capabilities of a
large energy company.

Our project has two major components: the development of an inexpensive and user friendly smart
power meter and software to facilitate peer to peer trading of surplus energy. When these two
stages of the project are complete, individuals using our hardware and software will be able to buy
or sell surplus energy at significantly better rates than could be obtained going through a utility
company.

A goal for the project that is still being defined is developing a marketplace where these peer to
peer interactions could be facilitated. We hope to develop a way to automate this process so users
would enter their desired parameters for energy transactions (maximum amount, times, etc.) and



the system would be automated such that these transactions could be financially optimized with
minimal work from the user.

1.2 OPERATIONAL ENVIRONMENT

The operational environment for our solution will be a relevant factor in the final implementation.
Our smart power meter has to be able to withstand all of the conditions that existing power meters
currently withstand. It will have to be able to survive in various weather conditions that naturally
come with being a product that lives outside of the home.

On the software side, the “operational environment” will be the economic and political climate in
which our solution is being used. There are many legal factors that could come into play with this
kind of trading, like use of the utility company’s infrastructure or trading between different cities,
states, countries. These are all factors that would need to be explored in further detail if this project
were to be expanded beyond a simple test environment with two nearby homes or small businesses.

As the project continues (potentially with future senior design groups), more focus can be put into
refining the robustness of the hardware and making sure our software implementation integrates
effectively with the economy and politics of the location where our solution is being used.

1.3 INTENDED UsErs AND USEs

The users can be split into two groups, which we will refer to as “producers” and “consumers.” The
producers are the users who will supply excess energy that they produce into the system.

Producers look to maximize the profit that they can create from producing energy, and our
tradable energy market will enable them to do just that. In order to best serve these users, we are
minimizing the transaction costs and maximizing the ease with which they can find buyers for their
energy. The consumers are the users who will be consuming the excess energy that producers
create. We can best serve them by minimizing the transaction costs and making it as easy as
possible for them to find producers whose energy they can consume.

The intended use can therefore be described as incentivising personal generation of energy by
creating an accessible market for both producers and consumers. Ideally, intended users would
eventually include anyone with an electrical service connected to their home or business but in the
current utility climate, the intent is simply to attract as many users that already have direct
generation installations as possible. More producers in our user base will allow us to obtain more
consumers by making the market more competitive and attractive. In due course, the flow of
consumers to the marketplace will encourage more people to become producers and install their
own direct generation setups. This circular growth will eventually lead to us reaching our intent of
widespread incentivisation of direct generation.



1.4 ASSUMPTIONS AND LIMITATIONS

Because our goal is to make an impact on large scale issues like the energy market and climate
change, it is important that we set certain restrictions about what aims we can realistically hope to
achieve with our project. The following list gives the most important of these assumptions and
limitations regarding the scope of our project.

Assumptions:

e Enacting the distribution of power after our transaction is completed is outside of the
scope of our project, including the new power equipment that could be required for this
distribution

e For a full implementation of our project, an agreement will have to be completed with the
utility company owning the power infrastructure so they will allow these transactions to
take place

e Failing to reach an agreement with a regular utility, an agreement will have to be
completed with a developer of a subdivision, whom would typically own the power
infrastructure of said subdivision

e The level of testing that we will complete will be within an individual municipality, so
interstate/international trading laws will not be applicable

Limitations:

e The cost of the IoT smart power meter must not exceed that of the average power meter
used in Ames, IA (the area of testing)

e The purchase of all hardware components and software licenses must be approved by our
client and must not exceed the amount of funds they have allocated for the project

e The cost for user operation of our smart power meter must be minimal so as to make the
implementation worthwhile for the customer

1.5 EXPECTED END PRODUCT AND DELIVERABLES

The basic deliverables for this project can be boiled down into the following three items.
IOT Smart Meter - Estimated delivery: March 15

An “internet of things” capable smart meter will need to be installed at a user’s property to read the
flow of energy into their home/building. This smart meter will be connected to the internet, and
will interact with the energy marketplace to enact transactions. The smart meter will be able to
verify transactions of power over set periods of time, as determined by the agreement between the
buyer and seller in the transaction. The goal for the end of this semester is to have functioning
basic communication between the smart meter and the web application. By the end of the year, we
will develop a working prototype that is able to verify the completion of a transaction, connect to
the web application, and display vital information to the user via a user interface directly on the
physical meter.



Energy Marketplace Implementation - Estimated delivery: April 1

Power transactions will be made and recorded using a MongoDB database which is manipulated by
a marketplace controller on the backend of the web application. This marketplace controller will
be manipulated using the web application. A stretch goal is to implement a transaction
matchmaker, which would automatically create and accept transactions based on predetermined
criteria from the user.

Web Application - Estimated delivery: April 15

Users will manage their power transactions through an easy-to-use web application, which will
interact with the energy marketplace through API calls, receiving and changing information
through a MongoDB API. This application will allow the user to monitor and learn from their
energy use and production, and will also allow users to buy and sell energy through a marketplace
interface. Users will also be able to download personal usage and production statistics through the
web application. The web application will include login/account creation capability and viewing
transaction history as well.

2 Specifications and Analysis

We have researched various ways to go about solving our problem, the most significant of which
are detailed below.

2.1 IMPLEMENTATION OPTIONS

Software
1. Ethereum Approach

Using the open-source ethereum (blockchain) platform to develop smart contracts for
buying and selling energy. Using ethereum we can utilize their stable Solidity language to
implement our smart contracts. The advantage here is there are many projects built with
this stack allowing for more resources and support.

2. Hyperledger Approach

Using the open-source hyperledger (blockchain) platform, which is newer compared to the
more established ethereum approach. Hyperledger is supported by larger organizations
such as IBM. We believe this will allow the technology to stabilize long term with the
backing of a large company compared to the burn-out many open-source projects that lack
an organization have seen.

3. Traditional Marketplace Approach

Using a traditional marketplace instead of a blockchain implementation will allow us to
provide cheaper transaction rates to our customers. This is because paying for each
blockchain transaction is a fairly expensive overhead ($0.20-0.40 in the last 6 months) to
selling energy. Implementing a traditional marketplace will also be more simple and easier
to customize.



Hardware
1. Raspberry Pi Approach

This approach would use GPIO to continuously ready energy input and output. The data
will then be used for buying and selling. Raspberry Pi has built in [oT capabilities which
provide the needed support for transactions.

In the prototype form, the Raspberry Pi will non-intrusively connect to the existing power
buses, serving as a smart meter to connect to the Mongo database in addition to the
existing traditional meter. Current and power usage will be tracked and data will be
transmitted to the server.

2.  Microcontroller/custom PCB Approach

This approach is functionally identical to the Raspberry Pi, but built with a different set of
components. Both will record and send data for buying and selling. This approach would
require more work, but it may allow us to optimize power consumption and only use the
hardware that is vitally necessary for the functionality of the meter. The options that we
have explored on this front include sticking with standard Internet connectivity, local
connections such as Bluetooth or Zigbee, or cellular connectivity. Internet connectivity is
the implementation strategy with which our team is the most familiar, but the other
options discussed could provide benefits in ease of configuration for the user. The pros and
cons of each of these solutions will be explored in more detail as we continue our designs
and prototyping into the second semester of senior design.

2.2 PropPoOSED DESIGN

For our project to be successful, there are a series of requirements that must be met. These are
analyzed in detail below.

Functional requirements:

1. AnIoT Smart Meter device
2. Web app for management of transactions
3. API for communication between the smart meter and the web application

Non-functional Requirements:

1. Ease of setup: Any user must be able to easily install and configure our hardware/software.
Portability: The web application must be usable on various platforms.

3. Robustness: The hardware must be able to withstand environmental conditions and be able
to respond to signal loss and power outages. The software must be tested to handle edge
cases and avoid fatal errors.

4. Scalability: The hardware and software must designed in such a way that it could handle a
large network homes that would be required for a full implementation of our design.

5. Code quality/documentation: In order to fully achieve the aforementioned requirements,
we must write code that is understandable and well-documented.



IoT Smart Meter

Based on research about products that are readily available for a reasonable cost, we determined
that is was in our best interest to begin our development of the smart meter on a module that
already has basic functionality like a Raspberry Pi. We will focus our efforts in this preliminary
testing on the network and communication capabilities that will require us to learn the Raspberry
PI's general setup and software libraries. Once we are able to get this version of the hardware fully
functional, we will assess this form of the solution and determine if it is acceptable. Depending on
the results of this assessment, we may move on to trying to create the hardware with a custom PCB
if time permits. Having two versions of the hardware implementation will be the most effective way
for us to compare these solutions and determine which is the best one to choose for the long term,
taking into account the cost and effort that went into creating both. For either implementation
strategy, the basic block diagram describing the major components and functionality of the IoT
smart meter is shown in Figure 1.

Grid Line

Consumption

Transducer

Microprocessor

DINO Communication Module
DIN1

CH1 D1

ADC
Solar Generation

2

CH2 D2

Production

Transducer

Figure 1: A top-level block diagram of the smart meter basic functionality




Web Application and API

All relevant user data, including account information, energy usage statistics, and transaction
details, will be stored in a MongoDB database on AWS. Our web application will interact with our
MongoDB database via an API. These API method calls, along with some additional backend
functions, will allow the user of the web application to view information on their energy usage and
production (from multiple smart meters if necessary), and will allow users to search for, buy, and
sell energy. A component diagram of the web application can be seen below in Figure 2.

Web App
Front End E Back End E
lookupEnergyUsage()
to MongoDB
© MongoDB API < g
> S o N
Energy Dashboard o‘igj QOQQJK\BQ\ .§§
§8 O O ¢
AV ANAY
Y
viewOpen P N
—C Transactions() 6*?
I THO——— & 5y
createOpen Py &
e Transactamy | Marketplace Controller § O ¢ O
Marketplace accept
___CC Transaction()
s& o &
SEA Y S
@ & IS5
Y 15T
Matchmaker A  Controll
) ccount Controller
Login/New Account (AD
(7~,__checkLogin() |
@
f‘c createNewAccount()
= = tSettings()
. getSettings|
Account Settings ©
(7 updateSettings()
©

Figure 2: A component diagram of the web application




Overall Design

Details on the overall design and development process of our project can be seen in Figures 3 and 4
below. Figure 3 shows an overview of our proposed system. Users will install smart meters on their
property where the meters can read the current. The smart meters will communicate with the web
application, and all of the user information will be stored in a MongoDB database. Users can view
their information and make energy transactions by accessing the web application through any
browser.

Web Server

Web Application
MongoDB

i

Power Company

D W

E/ Browser Smart Meter

AN

Smart Meter

Web
Browser| Smart Meter

Figure 3: An overview of our proposed system

Figure 4 shows our proposed DevOps deployment. We have a production
environment/instantiation of the application that all users will see and use, individual
environments for each of the software developers on the team to work in, and a staging
environment for testing changes before pushing out to the production environment. The user
information will be stored in MongoDB databases in Amazon Web Services (AWS), and the web
application is deployed on Heroku.

10



Update Timeline:

Merge

Push

Branch Master
Development @ Staging @ Production

= Smart Meter
POSJ' -
X a- "~
0
S .
5= POST -
[
Pythan/Flask ()] -~ o
z - Smart Meter
HEROKU
\\!_nw_/ k L User
- > Web App :
Production (Production) :
~ ~
e . mongo )
- - a1 - Web App User
i (Staging)
Staging
! \
1 \
Localhost I
. mongo
..
e Web App
Development (Development)
g’ Tester/ Tester/
Developer Developer
Developer

Figure 4: A DevOps diagram illustrating the design and development process of the project

2.3 DESIGN ANALYSIS

In section 2.1, we discussed some of the various implementation options that we explored and the

pros and cons of each. In this section, we will discuss the specific implementation strategies that we

have chosen to use at this point and some of the challenges that we expect to face with each.

11



For our software design, we are implementing a web application using the MERN stack, an open
source end-to-end dynamic application framework. This MERN stack includes a MongoDB
database for data storage and manipulation. Express is a back end web application framework that
runs on top of Node]JS. React is a JavaScript library that allows us to build a dynamic user interface.
Finally, Node]S is an open source server framework. Although this stack is very robust and results
in clean looking applications, there are some risks associated with it. The most notable of these is
the relatively small amount of documentation for this software stack, since it is a fairly new stack.
This means that debugging issues will take more effort than if we were using less modern, but more
tested, technologies. The app is deployed using Heroku, which makes running our Node]JS app
fairly straightforward.

For the hardware design we have decided to use a Raspberry Pi in conjunction with a custom
current sensor to create the IoT Smart Meter device. The Raspberry Pi was chosen over a standard
Arduino because the Raspberry Pi is a more powerful device and the fact that members of our
software team will not necessarily need as deep of a knowledge of embedded system programming
as they would with an Arduino. As work goes on, we may decide that we want to create another
prototype with an Arduino or PCB in order to reduce price and power consumption for the end
user. For the moment, we see Raspberry Pi as the best option because it should be easier to debug
and troubleshoot while we are in the early stages of prototyping. The Raspberry Pi will also have a
built-in Ethernet port which will make the networking that is necessary for our device much easier.

For the current sensor, we are using the MASTECH MS3302 AC current clamps (with a voltage and
current range within our required operating conditions) to a signal processing circuit and then
feeding that information to the Raspberry Pi for networking. We decided on this method of
implementation because of its relative simplicity and the fact that it will allow us to
compartmentalize the work for different groups of team members. The issues we foresee with this
method is that it may not be streamlined enough for a final prototype. Cobbling the various
different elements together could result in a clunky prototype but at this stage, but for our initial
prototype, our main aim is functionality.

3 Testing and Implementation

Successful and efficient testing is necessary to implementing our solution correctly. How we have
and will test our solution, including our current progress, is detailed below.

3.1 INTERFACE SPECIFICATIONS

There are a few interfaces in our design. The first is between the current sensor and the GPIO of a
Raspberry Pi. The Raspberry Pi will be keeping track of the energy consumption rate of an entity via
the current sensor. In order to test this interface, the sensor’s output data will be verified followed
by unit and functional testing of the current sensor and Raspberry Pi together. It is imperative that
this data is accurate, so thorough testing will be necessary. The Raspberry Pi will then send
information to the MongoDB using a Nginx server. This interface can be tested by viewing the data
from the sensor and comparing it to the values in the MongoDB database after the information is
sent. Finally, the web application interfaces with the information stored in the database. The web
application will both send and receive data from the database, so this will need to be unit and

12



functional tested as well to ensure that the user has all the functionality that is desired, as
mentioned in section 2.2, Web Application and API.

3.2 HARDWARE AND SOFTWARE

We will implement several levels of testing including unit, integration, and functional testing.
Hardware Tests

The hardware element of the project will be the smart meter. Within the smart meter, it will
consist of two main parts: the current sensor and the Raspberry Pi. Both of these parts will be used
in the testing phase because they are critical to the success of the project. The best way to ensure
that both of these parts function the way they need to is to test them.

The current sensor is a device that will be attached to a home or business in addition to, or in place
of, their utility meter so it can measure the power being used by the building. This can be tested by
using the lab equipment within the university for the initial and intermediate stages. For the final
stage of testing, a test circuit of a few homes could be used.

The Pi will be used as a gateway between the current sensor and the blockchain software, sending
and receiving the necessary information for each element. It will be tested in conjunction with the
current sensor by feeding known values to and from current sensor and checking to verify if the
information provided by the Raspberry Pi is correct.

Software Tests

There are three software components that need to be tested. These include the MongoDB database
and functions to add and change data in it, the user web application, and full integration between
these parts and the smart meter. The database implementation will be the first major component
to test. It is the backbone of the energy trading system that we are establishing, and will need to be
rigorously tested with test payloads and changes to ensure that the transactions are stored and
work as intended. When we can ensure the basic functionality of the database,, the development
and testing of the web application can commence.

The exact details of what the web application will contain are still being deliberated, but will likely
include a dashboard within which the user can monitor their energy usage and production and a
marketplace to sell and buy energy. Like all web pages, its functionality, usability, and performance
will be tested to ensure that everything works as intended. During development, each feature will
be carefully unit tested to ensure that there are not any simple errors preventing the web page for
functioning properly. Its ease of use can be tested by many users, ensuring that it is easy to use for
all potential users, not just blockchain experts.

The last thing to test will be the communication between the smart device, database, and web
application. While integrating these three components, basic testing will be done, but the most
extensive testing will be done by creating some basic end-to-end test cases that test the
performance of the project as a whole. Only once these test cases are successfully completed can
we be confident in the software performance of our project.

13



3.3 PrOCESS

Since we have yet to complete testing on each component in our system, we will focus on the tests
we plan on using once we reach that milestone. Our initial tests will consist of white and black box
testing of each component. We will first unit test the current sensor followed by unit testing the
Raspberry Pi related methods. We will then conduct integration tests to ensure the current sensor
and Raspberry Pi are communicating correctly.

The second stage in testing will be to unit test the API methods written to interact with the
MongoDB database. This will be followed by completing unit and functional tests on the web
application. At this point integration testing for the entire system, from meter to database to web
application, can be conducted. In general this testing will be very similar to the previous process
however due to the nature of dealing with a live environment, we will simulate some aspects. For
example we will simulate several users with smart meters and test the ability to purchase, transfer
and verify the transaction.

3.4 REsuLTs

We have done extensive testing on a variety of project components. We were just recently able to
read current from power lines using current clamps attached to our Raspberry Pi. A clean, but
barebones, version of our web application is visible, and is reading mock data from the database.
Some correct API functions between the application and the database have been created as well.

We have also done extensive tests on the Ethereum platform to study feasibility, which have shown
that we can create a tradable energy cryptocurrency that could be used on a blockchain. However,
we decided relatively late in this semester that we are going to use a traditional marketplace and
forego using a blockchain implementation of the marketplace because of the high costs and
implementation complexity associated with Ethereum.

4 Conclusion

Money is the primary motivator for many making energy decisions, and as of right now, there is not
enough of an economic incentive to prioritize the generation of renewable energy. We hope to
produce this economic benefit by providing a way to make or save money from renewable energy
via a marketplace implementation of peer to peer energy transactions.

We determined that our solution would require three main components:
1. IoT smart meter: for reading energy usage and verifying transactions
2. Marketplace functionality: for facilitating secure transactions
3.  Web applications: for allowing users to interface with our system

We have created a working prototype using a Raspberry Pi for data processing and communication
and an external current sensing module. Along with this, we want to complete basic functionality
on the web application in order to test our system on a small scale. As time progresses, we will

14



improve our system by learning what works and what does not, refining smaller aspects after
building a solid functional foundation.

While there are groups like Grid+, LO3, and ConsenSys that have already made strides towards a
similar solution, we feel that our team is starting our project at just the right time. We are able to
learn from the mistakes from our predecessors by taking what they would have done differently
and actually doing it differently. While we are not the first to work on this type of project, we are
early enough that we are not fighting against any other groups that are dominating or
monopolizing the market. With the structural background that we have established in this
document, we hope to be able to develop a solution that meets the needs of the users at hand and
takes strides towards increasing the worldwide consumption and generation of renewable energy.

4.1 ACKNOWLEDGEMENT

We would like to thank those who have made contributions to the project, outside of the members
of our team. First and foremost, we would like to thank our adviser, Dr. Goce Trajcevski, for his
technical assistance and comprehensive guidance throughout the project. We would also like to
thank Sodima Solutions for providing the funding for the required hardware for the project, as well
as providing the overall idea of the project. Lastly, we would like to express our gratitude towards
the faculty of lowa State University for their support in giving us the technical background and
knowledge for us to handle a project of this scale. Without the support of these individuals and
organizations, our project’s success would not have been possible.

15



4.2 REFERENCES

[1] "Bitfinex." BitFinex. N.p., n.d. Web.

[2] "ERC20 Token Standard." ERC20 Token Standard - The Ethereum Wiki. N.p., n.d. Web.

[3] Geils, Brendon. "Bgeils/pwr-blockchain." GitHub. N.p., n.d. Web.

[4] Geils, Brendon. "Pwr.company.” Pwr.company. Blockchain News, n.d. Web.

[5] Lumb, David. "This New York Project Fuses Energy Microgrids With Blockchain Technology."
Fast Company. Fast Company, 06 May 2016. Web.

[6] Morgen E. Peck and David Wagman. "Blockchains Will Allow Rooftop Solar Energy Trading for
Fun And Profit." IEEE Spectrum: Technology, Engineering, and Science News. N.p., o1 Oct.
2017. Web.

[7] Sebnem. "Token Model for Energy - Part 1: Review of the Power Ledger Token Model." Medium.

Medium, 12 July 2017. Web.

[8] “PowerLedger Token Generation Event.” PowerLedger Token Generation Event,
powerledger.io/.

[9] Ji, Ling. “Global Electricity Trade Network: Structures and Implications.” Public Library of
Science, 9 August 2018. Web. 22 November 2017.

[10] Upton, Eben. “Raspberry Pi User Guide.” Wiley and Sons, 2012. Web. 10 October 2017.

16



5 Appendices

Here, we provide any figures used in this document, as well as several from past iterations of this
document.

5.1 CURRENT DESIGN DIAGRAMS
Hardware Block Diagram

Figure 1is duplicated below. It shows the functionality of our smart meter design. For more
information, see Section 2.2: Proposed Design.

Grid Line

Consumption

Transducer

Microprocessor

DING Communication Module
DIN1

CH1 D1

ADC
Solar Generation

i

CH2 D2

Production

Transducer

Figure 1: A top-level block diagram of the smart meter basic functionality




Updated Web App Macro-Component Diagram

Figure 2 is duplicated below. It shows the overall components in our web application design. For
more information, see Section 2.2: Proposed Design. For the previous design, see Figure 6 in
Section 5.2: Previous Design Diagrams.

Web App
Front End E Back End E
lookupEnergyUsage()
to MongoDB
© MongoDB AP < g >
Energy Dashboard > 5 N
gy OQ§ \5” 9%& §§e\
&5 QFE QO TF
S PR
N
o] S §
—C Tr:r?szcl?;nns() G$ f
——H( )7 S X
createOpen Py &
i —C Transactont | Marketplace Controller g O & O
Marketplace O accept
___CC Transaction()
S & k)
AL
Matchmaker
. (Al) Account Gontroller
Login/New Account
(7~,__checkLogin() |
©
@ teNewAccount
C :eae ewtsct:‘oun ((j)
. getSettings|
Account Settings ©
date Setti
@ updateSettings()

Figure 2: A component diagram of the web application




Updated System Overview Diagram

Figure 3 is duplicated below. It shows our current plan to implement our system using smart

meters and a web application/MongoDB deployment for our energy marketplace. For the previous

design, see Figure 5 in Section 5.2: Previous Design Diagrams.

Web Server

Web Application
MongoDB

LI
il

E, Browser Smart Meter Power Company

N\

Smart Meter Smart Meter

Figure 3: An overview of our proposed system

19




DevOps Deployment Diagram

Figure 4 is duplicated below. It shows the DevOps deployment for our web application. For more
information, see Section 2.2: Proposed Design.

Update Timeline:

Merge Push

Branch Master
Development @ Staging @ Production

! Smart Meter
POST . =
- e
X |a- :
S .
== POST .
i~
Python/Flask ()] -~
z = Smart Meter
HEROKU -
-
-
- - User
mongo k
> Web App -
Production (Production) :
N o~
i~y
-y
-~y
ongo /
o - ser
- Web App
i (Staging)
Staging
! \
! \
Localhost I .
.mongo
< > Web App e
Development (Development)
g Tester/ Tester/
Developer Developer

Developer

Figure 4: A DevOps diagram illustrating the design and development process of the project

20




5.2 PrEVIOUS DESIGN DIAGRAMS

Original System Overview Diagram

Figure 5 is our original system design, and includes implementation of blockchain through an
Ethereum deployment. For an updated system diagram, see Figure 3 in Section 5.1: Current Design

Diagrams.

Web Server Ethereum Deployment
[
Web Application L
= Smart Confracts
EBlockchain|
Ledger r—,

g

-
: 4 °
. Web
— rOWSer Smart Meter
—

Blockchain;

_] | | Ledger

=
%

Power Company

—
Blockchain|
Ledger

d .

eb
Browser Smart Meter Browser Smart Meter
J S
Blockchain Blockchain|

| | Ledger —_— Ledger

Figure 5: Original system overview diagram

21



Original Web App Macro-Component Diagram

Figure 6 is the original macro-component diagram for our web application, as it would have worked
with an Ethereum blockchain. For an updated macro-component diagram, see Figure 2 in Section
5.1: Current Design Diagrams.

Ethereum Deployment
Web A «Contracts
initTransaction . .
{l 3 - {I |n|tTran5qg|ct|0n «Contracts E
approveTransaction avascrip! =4
Web App Front End ) Blockchain transj?r
declineTransaction Jf
.y Interface declineTransaction
=/ o
viewTransactions =N L E
j getTransg\f:llons «Contracts
| \;
«Contracts E

Figure 6: Original macro-component diagram for the web application and how it interacted with
the Ethereum deployment

22



Original Web App Functionality Map

Figure 7 is a map/mockup of our web app’s functionality, as it was originally planned with the
blockchain implementation.

Welo Apglication Use Map (&elid

Quttons

Jﬁ"‘ Add.r
Rk [ =)
T‘muprm’, @ o |TimlE

?o,ubl Lh

A coms et biony

~A o D 1t
- ¥ Ite‘gif &

sSeTE
— - O Ldg,ar [
—_——

— <~ TJ O ™ Fre G TR @D
—_— T .r .

fote Tofen T~ [A 9@ | Dectng WL LRI T LT

Bach transac Fon .s
a st tinelume and mite

o o

Figure 7: Original map of the functionality of the web application, as it would have worked with a
blockchain design

23




